
CheatSheet.md 11/30/2021

1 / 7

CS3219 Cheatsheet

Software Engineering Principles

Principle of Modularity

Shorter development time
Better flexibility
Better comprehensibility
Decomposition of a big chunk into smaller well defined interfaces
Way of managing the complexity

Software Design Patterns
Design Pattern: A solution to a problem in a context
Tried and tested solutions to common problems in software design

Creational
Provide ways to instantiate single objects or groups of related objects.

Builder Pattern

Separate construction of a complex object from its representation so that the same construction
process can create different representations
Enforces a step-by-step process to construct a complex object as a finished product.
Finished products can have different representations
Good when designing classes where there are few compulsory parameters with optional / identical
arguments for some

Prototype pattern

Create an object by cloning another object
Do not create a new object for each client requesting it
Create a single prototype and make copies of it for each of the client

Structural Patterns
Provide a manner to define relations between classes or objects

Adapter Pattern

Convert the interface of a class into another interface that the client expects
Let classes work together that couldn't otherwise due to incompatible interfaces.
Used when an incompatible module needs to be integrated with an existing module wihtout any source
code modifications.

Facade Pattern



CheatSheet.md 11/30/2021

2 / 7

Provide a simple unified interface to a set of interfaces in a subsystem.
Delegates client requests to appropriate subsystem classes.
Implement subsystem functionality. Subsystems are used by the facade but not the other way around.

Behavioural Patterns
Define manners of communication between classes and objects

Observer Pattern

Let objects observe the behaviour of other objects so they can stay in sync
A change to one object requires notifying others.
Participants

Interface of abstract class defining the operations for attaching and de-attaching observers to
the subject
Concrete subject class: Maintain the state of the object and when a change in the state occurs it
notifies the attached observers
Observer: Interface of abstract class defining the operations to be used to notify this object

Mediator Pattern

Define an object that encapsulates how a set of objects interact to reduce coupling
Delegates the routing of requests, messages, data that they exchange with other objects to the
mediator.
Allows loose coupling between sets of objects by handling the interactions between the objects
Participants

Mediator Base: Abstract class that declares methods for communicating with Colleague objects
Concrete Mediator: Implements Mediator. Maintains and coordinates Colleague objects. Holds
references to the colleague that it serves
Colleague Base: An abstract class for the colleague objects. Defines a single protected field that
holds a reference to a mediator
Concrete Colleague: The concrete colleagues communicate with each other via the mediator.
Send and receive methods are used to send messages to and receive messages from the
mediator.

Memento Pattern
Without violating encapsulation, allow client to capture an object's state and restore
Facilitates the current state of an object to be stored without breaking the rules of encapsulation
The originating object can be modified as required but can be restored to the saved state at any time.
Participants

Caretaker: Originator class to save and restore internal state
Originator: Defines operation for saving its current state and restoring to a previous state.
Memento: Stores an originator's internal state. Only originator that create the memento can
access it

State Pattern
Allow an object to alter its behaviour when internal state changes



CheatSheet.md 11/30/2021

3 / 7

Domain objects often have a concept of state
Behaviour of domain object depends on its state
Client requests mau change the state forcing the object to behave differently after being invoked
Participants

Context
Provides an interface to client to perform some action
Delegates state specific requests to the Concrete State subclass that defines the current
state

State: An interface that encapsulates the behaviour associated with a particular state of the
Context
Concrete State: Concrete class that implements a behaviour associated with a state of the
context.

Strategy Pattern
Represent a behaviour that parameterizes an algorithm for behaviour or performance
Define family of algorithms, encapsulate each one, and make them interchangable.
Let algorithm vary independently from the clients that use it.
Participants

Strategy: An inteface common to all supported algorithm-specific classes.
Concrete Strategy: Implements the algorithm using the strategy interface.
Context

Provides the interface to client for encrypting data.
Maintains a reference to a strategy object and its instantiated and initialized by clients with
concrete strategy object.

Other Patterns

Data Transfer Object
Batch up multiple remote calls by encapsulating data that needs to travel from one application /
subsystem to another
Good for situations where there are multiple remote calls in a single call

Software Architectures

N tier Architecture

Each layer is independent during development
Each layer has a distinct and specific responsibility
Example: Computer Networks

Pipe and filter

Data Enters the system and then flows through the each component 1 at a time until the data ends up
at a data sink
A series of transformations on successive pieces of input data
Each component takes a set of inputs and returns a set of outputs



CheatSheet.md 11/30/2021

4 / 7

Connector -> Transmit output of one pipe into input of another pipe
Filter -> Transform the input and return to output

Shared repository

Maintains all data in a central repository shared by all functional components of the data-driven
application
Let availability, quality and state of the data trigger and coordinate the control flow of the application
Components

A central data structure that represents the current state
A collection of independent components that operate on the central data store

Connectors
Interactions between the repository and the other components
Varies between systems

EG: Interpreter with Shared Symbol Table, IDEs

Implicit Invocation / Event Driven Architecture

An event announcement implicitly causes the invocation of procedures in other modules
Components announce/ broadcast 1 or more events
Other components register interest in evnet by accociating a function to that event
When event is announced, it invoke all procedures which are registered
Components are loosely coupled
Components

Interface provides both a collection of procedures and a set of events
Connectors

Procedure call
Bindings between events and procedures

EG: Pub Sub Systems

Hexagonal Architecture / Ports and Adapters

3 Blocks of code
User interface (UI)
Application Core / Business Logic
Infrastructure

Adapters
Located outside the application core
Primary / Driving Adapters: Tell the application to do something
Secondary / Driven Adapters: Told by the application to do something

Ports
An entry point to the application core
A specification of how to use the application core
Located within the application core

Application Layer
Orgainising the application core
Several different processes that can be triggered in the application core by one or more user
interface



CheatSheet.md 11/30/2021

5 / 7

Contains the interfaces + Ports
Domain Layer

Contains the data and logic to manipulate data
Independent of the business logic that trigger it

Domain Service
Handles logic that span multiple domain model objects
Receives a set of entities and performs business logic on them

Domain Model
Contains the business objects that represents something in the domain
When an entity changes, a Domain Event is triggered and it carries the changed property values.
Represents a view of the problem domain

Flow of control is inwards
Dependencies go inwards

Command Query Responsibility Segregation

Separate commands from queries
A command model and a query model

Each model can have theyr own operations an representations of data
Commands

Operations that change the application state and return no data
Have side effects

Queries
Operations that return data
No side effects

Domain Driven Design

Does not dictate any specific architectural style
Only requires the model to be isolated from the technical complexities so that it can focus on domain
logic concerns
User Interface Layer

Interaction with external systems
Gateway to the effects that a human, an application or a message will have on the domain
Requests will be accpeted from this layer and the response will be shaped in this layer and
displayed to the user.

Application layer
It is the layer where business process flows are handled
The capabilities of the application can be observed in this layer
Direct clients of the domain model
Does not process business logic themselves

Domain Layer
Core of the application
Where all the business logic is implemented
Kept away from dependencies as much as possible
Third Party libraries should not be added as much as possible
Focus on simulating the business processes



CheatSheet.md 11/30/2021

6 / 7

Kept agnostic from the infrastructure code.
Infrastracture layer

Layer that accesses external services such as database, messaging systems and email services
External Services integration, repositories and persistence frameworks are implemented here
Dependent on the domain layer for domain objects and the repository contracts

Microservices
An independent, standalone capability designed as an executable that communicates with other
microservices
Standard lightweight inter-process communication
Organized around business capabilities
Loosely coupled

Highly maintainable and testable
Owned by a small team
Independently deployable
Loose coupling

Limits the different types of calls from one service to another
Related behaviour to be together and unrelated behaviour elsewhere

Monolith
Simple to develop: Many development tools
Simple to deploy: Simple deploy the WAR file
Simple to scale: Just run multiple copies
Single large code base

Hard for new developers to learn
Frequent deployments gets difficult
Scaling the application can be difficult

Each copy will need to access all the data

Model View Controller
MVC

Model: Data
View: Presentation
Controller: Logic

Benefits
Separation of Concerns
Facilitates extensibility

Model View Adapter
All communication between model and view must flow through a controller / adapter
Controller becomes a communication hub
Accepting change notification from model objects and UI Events

Model View Presenter



CheatSheet.md 11/30/2021

7 / 7

Model: Represents business entities or domain model
View: Lightweight. Only contains UI Elements

Passive View: View doesn't know model
Active View: Data binding or simple code in View

Presenter: Presents user actions to the backend system. Presents to user after getting response

Presentation Model

Model View View-Model
A structural design pattern that separates the object into three distinct types
View: Similar to View in Presentation Model
View Model: Equal to Presentation Model
Model: Business logic layer of the application

Web MVC
Same as MVC but controller also handles the initial HTTP request

Flux
Action: Raised by View when user interacts with UI
Dispatcher: Holds context to data store and propagates the action from View to store.
Stores: Registered with dispatcher and respond to it
Views: Respond to the change event and make appropriate changes


