NATIONAL UNIVERSITY OF SINGAPORE

CS4226 - INTERNET ARCHITECTURE

(Semester 1: AY2015/16)

Time Allowed: 2 Hours

INSTRUCTIONS TO STUDENTS

- 1. Please write your Student Number only. Do not write your name.
- 2. This assessment paper contains FIVE (5) questions and comprises NINE (9) printed pages.
- 3. Students are required to answer ALL questions.
- 4. All questions must be answered in the space provided in the answer sheet; no extra sheets will be accepted as answers.
- 5. This is a CLOSED BOOK assessment.
- 6. You are allowed to bring one A4 cheat sheet. No book is allowed.
- 7. Electronic calculators are not allowed.

STUDENT NO:	

This portion is for examiner's use only

Question	Marks	Remarks
Q1		
Q2		
Q3		
Q4		
Q5		
Total		

Question 1: Software-Defined Networking [14 marks]

Provide some y do we need su	e motivations of the software-defined a new networking approach in t	he first place?	[7 marks]
Discuss the partures that define	rinciples of software-defined netwo	orking. In other words	, what are the specia [7 marks
Discuss the particular define	rinciples of software-defined netwo	orking. In other words	, what are the specia [7 marks
Discuss the particle of the pa	rinciples of software-defined netwo	orking. In other words.	, what are the specia [7 marks]
Discuss the particle of the pa	rinciples of software-defined netwo	orking. In other words	, what are the specia [7 marks]
Discuss the particle of the pa	rinciples of software-defined netwo	orking. In other words.	, what are the specia [7 marks
Discuss the partures that define	rinciples of software-defined netwo	orking. In other words	, what are the specia [7 marks]
Discuss the partures that define	rinciples of software-defined netwo	orking. In other words	, what are the specia [7 marks]
Discuss the particle of the pa	rinciples of software-defined netwo	orking. In other words	, what are the specia [7 marks]

Question 2: Peer-to-Peer Networks [18 marks]

A. Consider a Chord network with namespace [0,7]. Suppose three nodes 0, 1 and 3 are active as shown in the above left figure, please construct the finger tables for the three active nodes. [9 marks]

fin	ger table o	f node 0
start	interval	successor

finger table of node 1					
start interval successo					
	44,				

finger table of node 3					
start	interval	successor			

B. Suppose after node 6 joins and node 1 leaves the network, three nodes 0, 3 and 6 are active as shown in the above right figure. Please construct the finger tables for the three active nodes. [9 marks]

fin	ger table o	f node 0
start	interval	successor

fing	finger table of node 3				
start	start interval successor				
	- 11111				
<u> </u>					
		<u> </u>			

fin	ger table o	f node 6
start	interval	successor

Question 3: Fairness [16 marks]

Consider the above system with four flows and four links. The demand for the four flows are 1, 4, 3 and 2 (Mbps) and the capacity of the four links are 2, 4, 5 and 3 (Mbps), respectively.

A. Calculate the weighted max-min fair allocation $\mathbf{x} = (x_1, x_2, x_3, x_4)$ to the four flows when the weights are $\phi = (\phi_1, \phi_2, \phi_3, \phi_4) = (2, 3, 4, 5)$. [8 marks]

l				
l				
İ				
ı				
ı				
ļ				
l				
l				
ı				
ı				
Ì				
ı				
ı				
ı				
l				
ı				
ı				
ı				
l				
Ì				
١				
١				
- 1			 	

B. Repeat part A when d_1 changes from 1 to 3 (Mbps) and C_3 changes from 5 to 2 (Mbps). [8 marks]

Question 4: Jackson Network [28 marks]

A packet-switched Jackson network routes packets among two routers according to the routing probabilities shown above. Notice that there are two points at which packets enter the network and two points at which they can depart. **A.** What is the maximum allowable rate r_1 that the network can tolerate? [8 marks]

١.	What is the maximum allowable rate r_1 that the network can tolerate?	[8 marks]

ver i and its queue). What are the values of $E[T_1]$ and $E[T_2]$?	sit to sub-system <i>i</i> [8 marks]
ving at sub-system i (arriving at sever i first). What are the values of marks]	
	1.0 mlb/v 410
	ne mbd y W
	The state of V = 1.00

Question 5: Scheduling [24 marks]

Consider a single router with two packet flows A and B. The router has a processing conditional 100 bits/second. Before (clock) time $t = 0$, the router is empty. The first two packets A arrive at time $t_a^1 = 1$ (seconds) and $t_a^2 = 3$ (seconds) with length $l_a^1 = 200$ (bits) and (bits). The first two packets from flow B arrive at time $t_b^1 = 0$ (seconds) and $t_b^2 = 2$ (seconds) $l_b^1 = 200$ (bits) and $l_b^2 = 300$ (bits). No other packets arrive afterwards. A. If the two flows have the weights $2\phi_A = \phi_B = 2$, calculate the real (or wall clock		
time f_a^1, f_a^2, f_b^1 and f_b^2 for each packet under GPS.	[8 marks]	

If the two flows have the weights $2\phi_A = \phi_B = 2$, calculate the virtual finishing to F_b^2 for each packet under WFQ.	ime F_a^1, F_a^2, F_b^1 [8 marks]
If the two flows have the weights $2\phi_A = \phi_B = 2$, calculate the real (or wall of the \hat{F}_a^1 , \hat{F}_a^2 , \hat{F}_b^1 and \hat{F}_b^2 for each packet under WFQ. If two packets have the same was we use FIFO to break the tie.	clock) finishing virtual finishing [8 marks]

Scratch Paper

— END OF PAPER —