NATIONAL UNIVERSITY OF SINGAPORE

CS4226 - INTERNET ARCHITECTURE

(Semester 1: AY2018/19)

Time Allowed: 2 Hours

INSTRUCTIONS TO STUDENTS

- 1. Please write your Student Number only. Do not write your name.
- 2. This assessment paper contains SIX (6) questions and comprises TEN (10) printed pages.
- 3. Students are required to answer ALL questions.
- 4. All questions must be answered in the space provided in the answer sheet; no extra sheets will be accepted as answers.
- 5. This is a CLOSED BOOK assessment.
- 6. You are allowed to bring one A4 help sheet. No book is allowed.

STUDENT NO:	

This portion is for examiner's use only

Question	Marks	Remarks
Q1		
Q2		
Q3		
Q4		
Q5		
Q6		
Total		

Question 1: M/M/1 Link Model [10 marks]

Consider a link modeled as an $M/M/1$ system. Suppose we know that the mean sojourn time of the packets is $\mathbb{E}[W] = 3$ seconds and 80% of time that the server is busy. 1. What is the packet flow's arrival rate to the link? [5 marks]					
B. What is the minimal arrival rate of the packet flow that is going to make the sys [5 marks]	tem unstable?				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

Question 2: BGP and Inter-Domain Routing [20 marks]

Two common ISP peering relationships are (1) provider-customer and (2) peer-peer relationships. In each case, the bilateral business agreements will disallow certain paths. In the following figure, each node represents an ISP, each directed edge represents a provider-customer relationship (arrow side is the customer, for example, ISP 4 is a customer of ISP 1), and each undirected edge represents a peer-peer relationship.

A. For each of the following paths, indicate whether it is valid based on the ISPs' business relationships. [12 marks]

path	is it valid?	path	is it valid?
$4 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 6$		$9 \rightarrow 8 \rightarrow 5 \rightarrow 2 \rightarrow 6$	
$4 \rightarrow 1 \rightarrow 2 \rightarrow 5 \rightarrow 8$		$1 \rightarrow 4 \rightarrow 7 \rightarrow 8$	
$7 \rightarrow 4 \rightarrow 5 \rightarrow 8$		$3 \rightarrow 2 \rightarrow 5 \rightarrow 8 \rightarrow 9$	

В.	Describe the differences between iBGP and eBGP in terms of their functionalities.	[8 marks]
	and end in terms of their fall their full th	10 IIIaiks

Question 3: Peer-to-Peer Networks [20 marks]

Consider a Chord network with namespace $\left[0,7\right]$ and three nodes 0, 3 and 5 being active.

A. Please construct the finger tables for node 0 and node 3.

[10 marks]

start	interval	successor		

start	interval	successor

of nodes visited until the content is retrieved.	[5 marks]

C. Suppose some content with a hash key value of 2 is queried at node 5. Show the sequen of nodes visited until the content is retrieved. [5 mark							

Question 4: Jackson Network [10 marks]

In the above Jackson network, the service rates of the right two servers are $\mu_2 = 5$ (packets/second) and $\mu_3 = 6$ (packets/second). The arrival rate is $\lambda = 2$ (packets/second). To guarantee the stability of the system, what are the conditions we need for the routing probability p and the server capacity μ_1 ?

Question 5: Fair Resource Allocation and Scheduling [20 marks]

Consider a network path with four links 1,2,3 and 4 that have capacities $C_1 = 2$, $C_2 = 4$, $C_2 = 5$ and $C_4 = 3$ (Mbps), respectively. There are four traffic flows: flow f_1 traverses links 1,2 and 3; flow f_2 traverses links 3 and 4; flow f_3 traverses links 1 and 2; flow f_4 traverses links 2,3 and 4. Suppose the demand of the four flows are $d_1 = 2$, $d_2 = 4$, $d_3 = 1$ and $d_4 = 3$ (Mbps), respectively.

A. Calculate the weighted max-min fair allocation $\mathbf{x} = (x_1, x_2, x_3, x_4)$ to the three flows when the weights are $\phi = (\phi_1, \phi_2, \phi_3, \phi_4) = (1, 2, 3, 4)$. [10 marks]

B. alloc	Identify cation.	the	bottleneck	link(s)	for each	traffic	flow u	nder the	above w	eighted	max-min [0 marks]

Question 6: Weighted Fair Queueing (WFQ) [20 marks]

Consider a single switch serving two packet flows a and b. The switch has a processing capacity of 80 bytes/second. Before (clock) time t=0, the switch is empty. The first two packets from flow a arrive at time $t_a^1=0$ (seconds), $t_a^2=3$ (seconds) with length $l_a^1=l_a^2=120$ (bytes). The first two packets from flow b arrive at time $t_b^1=1$ (seconds) and $t_b^2=2$ (seconds) with length $l_b^1=60$ (bytes) and $l_b^2=180$ (bytes). No other packets arrive afterwards.

A.	If the two flows have the weights $3\phi_a = \phi_b = 3$, calculate the real (or wall clock) finishing f_a^1, f_a^2, f_b^1 and f_b^2 for each packet under GPS. [5 marks]					
time	f_a^1, f_a^2, f_b^1 and f_b^2 for each packet under GPS.	[5 marks]				

B. If the two flows have the weights $3\phi_a = \phi_b = 3$, calculate the virtual finand F_b^2 for each packet under WFQ.	nishing time F_a^1, F_a^2, F_b^1 [10 marks]
C. If the two flows have the weights $3\phi_a = \phi_b = 3$, calculate the real (come $\hat{F}_a^1, \hat{F}_a^2, \hat{F}_b^1$ and \hat{F}_b^2 for each packet under WFQ. If two packets have the time, we use FIFO to break the tie.	or wall clock) finishing e same virtual finishing [5 marks]
inic, we use i ii o to bleak the tie.	

Scratch Paper